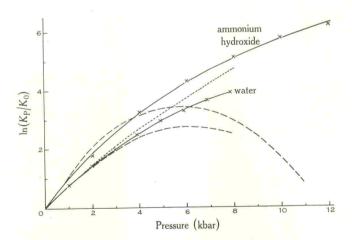
equation (12); the dashed curves are based on the truncated equation of Lown *et al.*<sup>10</sup> using their estimated values of  $\Delta V_0$  and  $\Delta \kappa_0$ , and the dotted curve for water is given by Owen and Brinkley's equation (5), using the value of  $\Delta \kappa_0$  measured by Kearns.<sup>4</sup>

Table 2. Relative molal ionization constants at high pressures


Experimental values of  $K_P/K_0$  are in ordinary type. Calculated values of  $K_P/K_0$  were derived from equation (12) and are in *italics* 

|                      |       |              | $K_{\rm P}/K_{\rm e}$ | values a  | t pressur  | es P (kba         | r)                                   |                   |       |
|----------------------|-------|--------------|-----------------------|-----------|------------|-------------------|--------------------------------------|-------------------|-------|
| 1                    | 2     | 3            | 4                     | 5         | 6          | 7                 | 8                                    | 9 10              | 11 12 |
|                      |       | Acetic       | Acid in               | Water at  | 25°C; Δ    | $V_0 - 11$        | 7 cm <sup>3</sup> mol <sup>-1</sup>  |                   |       |
| 1 · 546 <sup>A</sup> | 2.201 | 3.047        |                       |           |            |                   |                                      |                   |       |
| 1.541                | 2.219 | 3.033        |                       |           |            |                   |                                      |                   |       |
|                      |       | Self-ion     | ization o             | f Water a | it 25°C;   | $\Delta V_0 - 21$ | ·4 cm <sup>3</sup> mol <sup>-1</sup> | =_                |       |
| 2·19B                | 4.18  | 7.25         | 12.0                  | 18.6      | 27.6       | 38.9              | 51.3                                 |                   |       |
| 2.17                 | 4.20  | $7 \cdot 38$ | 12.0                  | 18.5      | 27.0       | 37.8              | 51 · 1                               |                   |       |
|                      | A     | mmonium      | Hydroxi               | de in Wa  | ter at 45° | C; $\Delta V_0$   | $-29\cdot0$ cm <sup>3</sup> m        | nol <sup>-1</sup> |       |
|                      | 6.02° |              | 26.2                  |           | 75.2       |                   | 174                                  | 320               | 494   |
|                      | 6.38  |              | 24.8                  |           | 69.6       |                   | 157                                  | 304               | 522   |
|                      | 6.38  | _            | 24.8                  |           | 69.6       |                   | 157                                  | 304               |       |

A Mean values from the results of Hamann and Strauss,12 Ellis and Anderson13 and Lown et al.10

<sup>B</sup> From the measurements of Linov and Kryukov.<sup>6</sup>

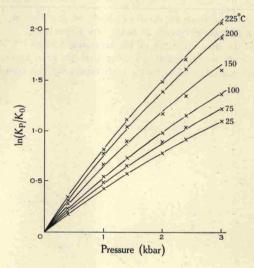
<sup>&</sup>lt;sup>c</sup> From the measurements of Hamann and Strauss. <sup>12</sup> The values listed here differ slightly from those originally published. A correction has been applied for changes in the cell constant of the conductance cell caused by the high pressure phase transitions <sup>14–16</sup> of Teflon.



**Fig. 2.** A logarithmic plot of the ionization constant of ammonium hydroxide in water at high pressures, at 45°C, and of water at 25°C. The solid curves are given by equation (12), the dashed curves by the equation of Lown *et al.*<sup>17</sup> and the dotted curve by Owen and Brinkley's equation (5).

El'yanov's analysis (see Tables 2 and 3 of ref.<sup>9</sup>) shows that the function  $\Phi$  is effectively independent of the temperature for ionization reactions in water—at least between 18 and 75°C. It follows that it should be possible to apply equation (12)

over a range of temperatures using a constant value of  $b = 9.2 \times 10^{-5} \, \mathrm{bar}^{-1}$ . Table 3 and Fig. 3 show that it gives a good description of the ionization of acetic acid in water over the very wide range of temperatures from 25 to 225°C, at pressures between 0 and 3 kbar.<sup>17</sup> At 225°C, water has a dielectric constant of only 30 to 40 in that range of pressures, 18 so that it is quite a different medium from ordinary water at 25°C. Nevertheless, the formula still applies, with the same value of b.


Table 3. Relative molal ionization constants of acetic acid in water at high pressures Experimental values of  $K_P/K_0$  are in ordinary type and calculated values are in *italics* 

| Temp. | $\Delta V_0$                         | $K_P/K_0$ values at pressures $P$ (kbar) |      |      |      |      |      |  |  |
|-------|--------------------------------------|------------------------------------------|------|------|------|------|------|--|--|
| (°C)  | (cm <sup>3</sup> mol <sup>-1</sup> ) | 0.4                                      | 1.0  | 1.4  | 2.0  | 2.4  | 3.0  |  |  |
| 25    | -11.35                               | 1·19 <sup>A</sup>                        | 1.52 | 1.76 | 2.16 | 2.47 | 2.98 |  |  |
|       |                                      | 1 · 19B                                  | 1.52 | 1.77 | 2.17 | 2.46 | 2.93 |  |  |
| 225   | $-36.4_{5}$                          | 1.41A                                    | 2.29 | 3.00 | 4.34 | 5.43 | 7.76 |  |  |
|       |                                      | 1.40B                                    | 2.24 | 2.98 | 4.43 | 5.64 | 7.92 |  |  |

<sup>&</sup>lt;sup>A</sup> Experimental values of Lown, D. A., Thirsk, H. R., and Lord Wynne-Jones, *Trans. Faraday Soc.*, 1970, 66, 51.

<sup>B</sup> Values calculated from formula (12), with  $b = 9.2 \times 10^{-5} \text{ bar}^{-1}$ 

Fig. 3. A logarithmic plot of the ionization constant of acetic acid in water at high pressures and high temperatures. The curves are given by equation (12).



## The Pressure Dependence of $\Delta V$

Substitution of (12) into (1) and (3) gives the following relationships

$$\Delta V_{\rm P} = \Delta V_0/(1+bP)^2 = W\Delta V_0 \tag{13}$$

$$\Delta \kappa_{\rm P} = 2b\Delta V_0/(1+bP)^3 = X\Delta V_0 \tag{14}$$

which describe the pressure dependences of  $\Delta V$  and  $\Delta \kappa$ . When P = 0, (14) reduces to  $\Delta \kappa_0 = 2b\Delta V_0 = (1.84 \times 10^{-4} \text{ bar}^{-1}) \times \Delta V_0$ , which is fairly close to the proportionality observed by Lown *et al.* (see the discussion of equation (7)).

<sup>&</sup>lt;sup>17</sup> Lown, D. A., Thirsk, H. R., and Lord Wynne-Jones, Trans. Faraday Soc., 1970, 66, 51.

<sup>&</sup>lt;sup>18</sup> Tödheide, K., in 'Water—A Comprehensive Treatise' (Ed. F. Franks) Vol. 1, p. 492 (Plenum Press: New York 1972).